If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-167=0
a = 1; b = 8; c = -167;
Δ = b2-4ac
Δ = 82-4·1·(-167)
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{183}}{2*1}=\frac{-8-2\sqrt{183}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{183}}{2*1}=\frac{-8+2\sqrt{183}}{2} $
| 4=3v=25 | | 20+6v=45 | | 0.25(2-x)x+1=x | | 100=12x+2x^2 | | a(3a+5)=7-5a | | 3x➗5-6=0 | | 2(x-3)=4(5+x) | | C^2+14c=-13 | | 7x^2-3x=0=0 | | 20^9a=29 | | 6x-5+x+9=9x-24 | | 6(5+3)-5=x | | .07x+x=8 | | 7(v-2)-8=-3(-9v+8)-6v | | |-5+m|=9 | | 6x+4=1x+9 | | 5u-18=-6(u-8) | | 4x^2-8x=3=0 | | 2x+8=1x+7 | | 4x62-8x=3=0 | | (1/7x-3)+(1/7x+3)=180 | | 8x+3=1x+2 | | 8x+0=1x+2 | | 8x+7=1x+2 | | 4(6x-)=24x-12 | | 1x+2x+3x=-39 | | 1x+3x+5x=63 | | 9x+1=6x+4 | | 3y-2.1=4.2 | | 9x+1=3x+2 | | 12=a-39 | | 6w=90 |